Buffer Overflow on the Programmer Perspective

Before learning Buffer Overflow vulnerability, we need to learn the working principles of the
concept of Memory. When a program runs, it needs a certain amount of memory. A typical C
program divides the memory into five different segments (parts), and each piece serves a purpose.
The five parts that are divided are called Program Memory Layout. The figure below shows the order

of the specified parts.

(High address)
Stack

Heap

BSS segment

Data segment

Text segment
(Low address)

The Low address and High Address: show us which Program Memory Layout is among the values.
Stack: Contains the variables defined in the program.

Heap: Used to create Dynamic Memory Distribution. It is processed by commands such as Malloc,

Calloc, Realloc, and Free.

BSS: It is used to store Static and Dynamic variables that are not used yet. If its content is not yet in

use, it is filled with O (zero).
Data: Used to store the Static and Dynamic variables used.

Text: Contains executable program codes. This section is generally only readable.

Now let's look at the working principles of the specified segments with the help of codes;

####tt Ethical Hacking - Sam Houston State University ####

#include

#include

#include

int Global_Variable =

int main()

{
####t Content to be stored in Stack Segment ####
int number_1 = -
float number_2 = -
static int Static_Variable;

##t#t#t Defining Memory for the Heap Segment ####

intxptr = (int*) malloc(*sizeof(int));

Content to be stored in Heap Segment
ptr[0]=5;

ptr[1]=5;

##ttt Releasing Memory Defined for the Heap Segment ####
free(ptr);

return !;

It is the Stack Segment that we will examine among the specified Segments. Now let's touch

the Stack structure in more detail.
Stack

In Computer Science, Abstract Data Type is the name given to the structure that regulates
the operations on the data. One of the most famous elements of the Abstract Data Type structure

is the Stack concept. Stack data type works with Last in First Out (LIFO) logic.

FIFO

[
]2 [alemay]2

LIFO

As can be easily understood in the image, although the number 3 is added to the last row, it

will be the first output with the LIFO (Last in First Out) logic. Stack variable has three different functions;
Push > Adds data to the Stack (First Place)
Pop - Receives data from the stack (From First Place)

Top = Retrieves the first data from Stack but does not delete the data.

Stack Memory Layout

‘Where Variable Values Are Positioned

Stack Growth

SSATPPY AJOWATY

When the variables reach the Stack Segment by the program, the Memory Address will show
down as the addition process works with LIFO logic. As the data will be read, Stack Growth will point

Upwards as the Last Added is the first to be read.

Unallocated Slack Space (ESP): Not available for use unless defined by the programmer. The

added variables and their contents will come to the light green area. It usually helps to show Last In

or First Out data.
Saved Frame Pointer (EBP): Shows First In or Last Out Data.

Return Address: It shows the returns in the code. It can be thought like a For Loop. Does not

finish his work without returning the given value.
Parent Routine's Stack: Identifies and processes addresses registered by the CPU.
Let's demonstrate with an example in order to better understand the information provided.

First Step : Type “echo 0 > /proc/sys/kernel/randomize_va_space” to Kali Linux terminal;

root(@qgsccsg: ~

File Actions Edit View Help

root@gsccsq: ~ x

echo 0 > /proc/sys/kKernel/randomize va space

1

Second Step : Type “apt-get install leafpad” to Kali Linux terminal;

reot@qscesq: ~
File Actions Edit View Help
root@gsccsq: ~ %

:~# apt-get install leafpad

Reading package lists... Done

Building dependency tree

Reading state information... Done

leafpad is already the newest version (0.8.18.1-5).

0 upgraded, O newly installed, O to remove and 611 not upgraded.
i ~#

T

Third Step: Create an empty document to desktop (Example.c);

Rename "Example.c”

Enter the new name:

Example.|

Example.c

Cancel Rename

Fourth Step: Open Example.c document with Leafpad and fill it up as in the image;

Example.c

¥ Open With "Vim"

P Open With "Leafpad"

B Open With "Mousepad"
Open With Other Application...

*® Cut

B Copy

¥ Move to Trash

L EEE
Rename...
Create Archive...
Properties...

BB Applications

Terminal -

File Edit View Terminal Tabs Help

// Ethical Hacking - Sam Houston State Uﬂiuerzitﬂ
#include

int main ()

{

char user_name[0];

printf ()i
scanf ('%s ,user_name);

printf(%s\n"', user_name);

return(0);

Fifth Step: Type “cd Desktop” and let’s turn our example document to executiable format with terminal;

Code : gcc -no-pie -fno-stack-protector -z execstack Example.c -o Example

root@gqsccsq: ~/Desktop
C * File Actions Edit View Help

root@qgsccsq: ~/Desktop &

Example.c Example

:~# cd Desktop/

ﬁcc -no-pie -fno-stack-protector -z execstack Example.c -o Example
#

Username in the 4th line of the code given above can take up to 20 characters. The state of Stack

Segment will be as follows;

1 2 3 4

‘g 5 6 7 8 :

% 9 10 11 12 [|:2

“ 13 14 15 16 ||5
17 18 19 20 |4

As you see at above, we already have 20 space to input data. Let's we check what happen

when we put some info on if;

Go back to Kali's terminal and type “./Example.c” then type an username;

root@qscesq: ~/Desktop
File Actions Edit View Help
root@qsccsq: ~/Desktop ®

: # ./Example
Please Type a User Name: qgsccsq
Your Username : gsccsq

The state of our Stack Segment will be as follows;

Stack Growth
SSAUIPPY AJOWIY

Buffer Overflow on the Hacker Perspective

We have seen a detailed review of a simple programming above. So how are these types of
programs abused by Hackersg As you may remember, we had a 20-character field. So what

happens if we cross borderse

Now let's enter 23 characters and observe the results;

reot@gscesq: ~/Desktop
File Actions Edit View Help
root@qsccsq: ~/Desktop x

./Example

Please T}'pe.a User Name: 0QQQQQQQQQQQQQQQQQQQAQQ
Your Username : QQQQQQQQQQQQQQQQQQQQQQQ

1

SSAIPPY AJOWAY

Stack Growth
I IR |R|Q
(o)l Foll Foll Mol K=
el | |e |
IR L |L |~

As you can see, Saved Frame Pointer contains areas to hide characters in itself. In addition to
the 20 previously registered characters, there is a field in the Saved Frame Pointer where we can
add an unknown number of characters. Now our goal is to confrol how many data can be saved

by the Saved Frame Pointer.

We need to check how many data can be saved with the Saved Frame Pointer (EBP) by trial
method until we get an error. As a result of my individual attempts, | came up to the 39th character

and when | entered the 40th character, | finally encountered an error.

root@gqsccsq: ~/Desktop

File Actions Edit View Help

root@gqsccsq: ~/Desktop ®

./Example

Please Type.a User Name: QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQAQQQQQQQ

Your Username : 0Q0QQQQQQQQQQQQQQQQQQQQQQQQQQQQAQNQQQQQQQQQ
Segmentation fault 0
: #

Let's check the state of our Stack Segment;

A Q Q Q Q
£ Q Q Q Q 2
8 g
© Q Q Q Q 3
] »
3 Q Q Q Q %
Q Q Q Q ‘

The Return Segment stopped the program because it could not get the variable values. Our
last letter "Q" did not fit info memory and started to overflow. This is exactly the Buffer Overflow, or

Stack overflow.

Creating Fuzzer to Make Things Easier

Based on the example above, it can be considered that we receive an error message if twice the
limit of the application is entered. However, the analysis is completely wrong. Now let's set the input

limit of our application to 50, then let's see how many values enough to get segmentation fault.

Terminal -

File Edit View Terminal Tabs Help
/ Ethical Hacking
#include

int main ()

{

- Sam Houston State University

char user_name[]H
printf (s

scanf ('%s’ ,user_name);
printf(%s\n', user_name);

return(0);

Compile it with “*gcc -no-pie -fno-stack-protector -z execstack Example.c -o Example”

root@qsccsq: ~/Desktop
File Actions Edit View Help
root@gqsccsq: ~/Desktop x|

gcc -no-pie -fno-stack-protector -z execstack Example.c -o Example |

Let’s put values to application;

root@qsccsq: ~/Desktop
File Actions Edit View Help
root@qgsccsq: ~/Desktop &

./Example

Please TYPe.a User Name: QQQQQQQQQQQQQQQQQQQQQQQQQQQQAMCAEQNQQAQAA1QANQQAAAGAAQ1AAAQNQAAQEAA1QAQNQAMCAAQNAARQAAQQQ
Your Username : QQ0QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQNNAMCQENQNQAQNMQ0ENQNAA0ENQNQAAEQNNAQ0ENQANQAQAQAQQ

Segmentation fault

1

In our previous conclusion, we thought that when we entered 100 data, we could get an
error, but 72 values were sufficient. So what happens if we make our value 5002 If you want, let's
write an application to facilitate these operations. Python language is the most used programming

language in Exploit writing thanks to its ease. Fuzzing or Fuzz is the name given to the exploits written

to automate the processes. Let's write a Buffer Overflow Detector Fuzzer for our application using
Python language. Our aim will be to find out exactly what value we receive the error message by

creating the data via Python and sending it to our target application.

Extra Point: Analyze the creation steps of the application, whose codes are shown below, and
explain at least half a page (30 Points). NOTE: BEST WAY IS CREATE SAME APPS IN YOUR PC THEN RUN
IT STEP BY STEP. If you have not Python-IDLE type “apt-get install idle-python3.7” to terminal then
create a document to your desktop with “.py"” extension. Finally, right click on it and click on open
with another application. You'll see IDLE-PYTHON on the list.

File Edit Format Run Options Window Help

B! /usr/bin/python =
05
subprocess

os.path.isfile("/root/Desktop/counter.txt"):
filel = open("/root/Desktop/counter.txt","r+")
from file = int(filel.read())
print ('s' * from file)
from file = from file + 1
filel = open("/root/Desktop/counter.txt", "w")
filel.write(str({from file))
filel.close()

filel = open("/root/Desktop/counter.txt", "w") I
filel.write("1") -
filel.close()

x|
Ln: 1 Col: 0
D oot/D op o []
File Edit Format Run Options Window Help
| 0s
subprocess
(1):
os.system{'/root/Desktop/Fuzzer.py")
subprocess.Popen(”./Fuzzer.py = ", shell= , stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate()[0]
p = subprocess.Popen("./Example = ", shell= , stdout=subprocess.PIPE, stderr=subprocess.PIPE).communicate()[0]

(len(p)) < 5:

filel = open("/root/Desktop/counter.txt","r+")

from file = int(filel.read())

exact_number = from file - 2

print{"Target Application Has BufferOverflow witn',strfexact_nqmber],'valJes 1)
os.remove("/root/Desktop/counter.txt") B
os.remove("/root/Desktop/f")

o 0000000000000

Ln: 1 Col:

Now, to test our application, let's make our limit 500 and run our application.

Terminal -

File Edit View Terminal Tabs

/ Ethical Hacking - Sam
#finclude
int main ()

{

Help

State Universi

char user_name[]H

printf ();
scanf ('%s’ ,user_name);
printf(%s\n', user_name);

return{0);

Compile it;

root@qscesq: ~/Desktop

File Actions Edit View Help

root@qsccsq: ~/Desktop &

gcc -no-pie -fno-stack-protector -z execstack Example.c -o Example
|

Run Runney.py

File Edit Format Run Options Window Help File Edit Shell Debug Options Window Help

0s /Ml Python 3.7.7 (default, Apr 1 2020, 13:48:52) B
subprocess [GCC 9.3.8] on linux
Type "help”, "copyright", "credits" or "license(}" for more information.
(1): >>>
os.system('/root/Desktop/Fuzzer.py') RESTART: /root/Desktop/Runner.py
Target Application Has BufferOverflow with 528 Values !
S5
subprocess.Popen(”./Fuz =", shell= , stdout=subprocess.PIPE, stder
p = subprocess.Popen(”. = f", shell= , stdout=subprocess.PIPE, std
(lenip)) < 5:
filel = open("/root/Desktop/counter.txt","r+"
from_file = int(filel.read())
exact_number = from file - 2
print{"Targe pplication Has BufferOverflow with",str(exact_number),"val
0s. remove(5 unter.txt")

os.remove("/ /Des p/f")

Using GNU Debugger (GDB) to Understand What's Going on Our Application

During the development of our applications, there may be interruptions in the operation of
our application due to some signals or interruptions or errors that come from the system or by the
software developer. It may not be enough to be able to predict such situations most of the time. In

such cases, our biggest helper will be GDB. An application called GBU debugger is commonly used

in Linux systems. With this application, your application's code or core file can be examined. Let’s

change our limit to 20 again and examine our target application with GDB;

Installation of GDB;

root@qscesg: ~
File Actions Edit View Help
root@qsccsq: ~ x

apt-get install gdb
Reading package lists... Done
Building dependency tree
Reading state information... Done
gdb is already the newest version (9.2-1).

Running Target Application with GDB;

root@qscesq: ~/Desktop
File Actions Edit View Help
root@qsccsq: ~[Desktop &

gdb ./Example

Copyright (C) 2020 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html=

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86 64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/=>.

For help, type "help". I

Type "apropos word" to search for commands related to "word"...
Reading svmbols fram ./Fxample...

--Type <RET= for more, g to quit, ¢ to continue without paging--c
(No debugging symbols tTound 1n ./Example)

(gdb) N

Run Target Application with type “run”;

--Type <RET> for more, g to quit, c¢ to continue without paging--c
(No debugging symbols found in ./Example) I

(gdb) run

Starting program: /root/Desktop/Example

Please Tvpe a User Name: C

Your Username : C

[Inferior 1 (process 8768) exited normally]

(gdb) N

Run Target Application again and let we put 40 value on it;

(gdb) run

Starting program: /root/Desktop/Example

Please Type a User Name: CCCCCCCCCCCCCCCCCCCCCcCcCccccccccccococcce
Your Username : CCCCCCCCCCCCCCCCCCCcccccocccececceccccccececcc

Program received signal SIGSEGV, Segmentation fault.I
in libc start main (main=0x401132 <main>, argc=1,
argv=0x7fffffffe298, init=<optimized out=, fini=<optimized out=>,
rtld fini=<optimized out>, stack end=@x7fffffffe288)
at ../csu/libc-start.c:308
308 ../csu/libc-start.c: No such file or directory.

(gdb) W

We got segmentation fault. Let we look it deeply. So, let we disassemble our registers with “info

registers” code;

root@qscesq: ~fDesktop
File Actions Edit View Help
root@qsccsq: ~/Desktop &

(gdb) info registers

rax 0x48 72

rbx 0x0

rex 0x0

rdx 0x0 0

rsi 0x4052a0 4215456
Ox7fTTf7Tb64cO 140737353835712
0x4343434343434343 0x4343434343434343
Ox7TffffffelcO Ox7fffffffelcO
Oxc100 49408
0x39 57
Ox7Tffffffela0 140737488347536
0x246 582
0x401050 4198480
Ox7Tffffffe290 140737488347792
0x0 0
0x0 0
Ox7ffff7elde02 Ox7ffff7elde02 < 1libc start main+226>
0x10206 [PF IF RF]
0x33 51 I
0x2b 43
0x0 0
Ox0 0
0x0 0
0x0 0

As you see, we have a constantly repeating set of values. Let put those values to Hexadecimal

to Text converter.

0x4343434343434343 CCCCCCCC

—)

| Convert! |E] Convert! E,I

Converter Welbsite: https://www.browserling.com/tools/hex-to-text

RBP is used to deduce the program crashes by storing the last image of the stack pointer

(RSP). In our example, we found that the RBP content overflowed with the "C" values we entered.
Debugging Target Application

As we have mentioned many times before in our example, our main problem is that we
exceed the data input limit given to us. There can be many solution stages of the said problem. In
this example, we will prevent the target application from crashing using the GOTO statement. | will

use the GOTO statement before the program closes;

Terminal -

File Edit View Terminal Tabs Help
'/ Ethical Hacking - Sam Houston State UﬂiUETEitﬂ

#include
int main ()

{

char user_name[20];

JUMP :

printf ()i
scanf ("%s",user_name);

printf(%s\n', user_name);
goto JUMP;

return(0);

Let’'s compile it;

root@qscesq: ~/Desktop
File Actions Edit View Help

root@qsccsq: ~/Desktop ®

gcc -no-pie -fno-stack-protector -z execstack Example.c -o Example
3 |

https://www.browserling.com/tools/hex-to-text

Let's run if;

root@qscesq: ~/Desktop
File Actions Edit View Help

root@qsccsq: ~/Desktop [

: # ./Example
Please Type a User Name: A

Your Username : A

Please Type a User Name: AAAAAAAAAAAAAAAAAAAAAAAAAA

Your Username : AAAAAAAAAAAAAAAAAAAAAAAAAA

Please Type a User Name: AA
Your Username : AA

Please Type a User Name: |j

Possible Question

1) Create Exam.c file;

Codes:

#include <stdio.h>
#include <unistd.h>

int checker() {
char getter[255];
int x;
register int id_getter asm("rsp");
printf("Welcome to the Example of Buffer Overflow !\n");
printf("\nEnter Your SHSU ID :\n", id_getter);
X = read(9, getter, 510);
printf("Your ID is : %s\n", getter);
return 0;

int main(int argc, char *argv[]) {
checker();
printf("Thanks a Lot !\n");
return 0;

2) Compile the Example.c file and put screenshots.

3) Make a fuzzer with Python then try to get segmentation fault with created application and
put screenshofs.
(You can pass step 3 because it could be hard but there is an extra point right here. If you
are not able to make a fuzzer try to put 272 times ‘A’)

4) Investigate Example.c with GDB as in document and put screenshots.

5) Try to debug malicious code block — each solution extra 10 poinfs.

(Hint: Try to set a limit, and loops.)

